leetcode 62. 不同路径

题目描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?

例如,上图是一个7 x 3 的网格。有多少可能的路径?

说明:m 和 n 的值均不超过 100。

示例 1:
输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向右 -> 向下
  2. 向右 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向右

示例 2:
输入: m = 7, n = 3
输出: 28

题解

动态规划问题,机器人每次只能向下或者向右移动一步,所以每个格子的路径数等于上边格子加上左边格子的路径数和,即dp[i][j] = dp[i-1][j] + dp[i][j-1]

示例代码(go)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
func uniquePaths(m int, n int) int {
dp := make([][]int, m)
for i := 0; i < m; i++ {
dp[i] = make([]int, n)
}
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
if i == 0 || j == 0 {
dp[i][j] = 1
} else {
dp[i][j] = dp[i-1][j] + dp[i][j-1]
}
}
}
return dp[m-1][n-1]
}